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A critical requirement to support secure decentralized applications is the ability to
compute cryptographic secrets amongst multiple parties. The Elliptic Curve Diffie-
Hellman algorithm supports this, but it must be implemented within Holochain’s lair-keystore,
which stores and manages all cryptographic material for Holochain applications.

For example, to compute some common data between two or more Agents who only
know the other’s public keys, the shared data can be derived and used for encryption,
but lair-keystore’s APIs do not currently allow it to be used to derive shared data for
other uses such as independently configuring Holochain DNAs to use a shared DHT, such
as required by apps like Volla Messages for two- or multi-party communications. It also
prevents the implementation of many types of secure backup schemes involving off-line
Ed25519 keypairs held in Crypto wallets or HSMs (Hardware Signing Modules).

In this paper we implement the examples in Wikipedia’s Diffie-Hellman and Elliptic-
curve Diffie-Hellman (ECDH) using the Python crypto-licensing module’s Ed25519/X25519
implementation, and propose enhancements to lair-keystore to support Holochain ap-
plications using these constructs; including a robust method to ensure that multi-party
Diffie-Hellman secret sharing does not leak the 2-party D-H secret between every pair of
Agents – which is precisely one of the "Intermediate" value shared in the naive multi-party
Diffie-Hellman computation! (PDF, Text)
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1 Two-Party Shared Secrets

In this simple Diffie-Hellman example using integers, a public key is the primitive root g
raised to the power of the private key, modulo the prime p:

A = ga mod p

B = gb mod p

Where:

• p = prime modulus (public parameter)

• g = primitive root (public parameter); a number whose powers generate all non-zero
values modulo p

• a, b = private keys (secret)

• A,B = public keys (derived from private keys, safe to share)

A shared secret calculation has a similar structure. By substitution, we can see that
our private key plus the counterparty’s public key can derive a common power of g – a
"shared" secret value:

sbob = Ab mod p

= (ga)b

= gab

salice = Ba mod p

= (gb)a

= gab

This is adequate to investigate the properties of Diffie-Hellman; later, we will inves-
tigate how this translates to multi-party Diffie-Hellman using ECDH via Ed25519 and
X25519 keypairs.
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1.1 Alice and Bob compute a Shared Secret via Diffie-Hellman
def mod_exp(base, exp, modulus):

"""Calculate modular exponentiation efficiently"""
result = 1
base = base % modulus
while exp > 0:

if exp & 1:
result = (result * base) % modulus

base = (base * base) % modulus
exp >>= 1

return result

# Public parameters. Small for demonstration, but cryptographically correct
g = 5 # primitive root
p = 23 # prime modulus

# Private keys
a = 6 # Alice’s private key
b = 15 # Bob’s private key

# Calculate public keys
A = mod_exp(g, a, p) # Alice’s public key
B = mod_exp(g, b, p) # Bob’s public key

# Calculate shared secret
s_alice = mod_exp(B, a, p) # Alice’s calculation
s_bob = mod_exp(A, b, p) # Bob’s calculation

[
[ "Party","Private Key","Public Key", "Shared Secret" ],
None,
["Alice", a, A, s_alice],
["Bob", b, B, s_bob],

]

Party Private Key Public Key Shared Secret
Alice 6 8 2
Bob 15 19 2

1.2 Verify Eve’s Known Values

What does Eve the eavesdropper know during this process?

[
[ "Parameter", "Value", "Known to Eve?" ],
None,
[ "g", g, "Yes" ],
[ "p", p, "Yes" ],
[ "g^a = A", A, "Yes" ],
[ "g^b = B", B, "Yes" ],
[ "a", a, "No" ],
[ "b", b, "No" ],
[ "g^{ba} = s_{alice}", s_alice, "No"],
[ "g^{ab} = s_{bob}", s_bob, "No"],

]
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Parameter Value Known to Eve?
g 5 Yes
p 23 Yes
ga = A 8 Yes
gb = B 19 Yes
a 6 No
b 15 No
gba = salice 2 No
gab = sbob 2 No

2 Three-Party Shared Secret Implementation

For three-party DH, the structure of the intermediate shared secrets is basically the cal-
culation and sharing of values computed by having each party apply their private key
exponent to the public keys of each of their counterparies, and share this with the one
remaining counterparty.

We can assume in many practical scenarios that each party has access to (or is provided
with) the public keys of all desired counterparties.

• Public keys are well known, or

• Someone initiates the process by collecting all counterparties’ private keys, and
sends them to everyone involved.

However, in this example we’ll demonstrate each party creating private keys a, b, c,
and transmitting the corresponding public keys A,B,C and all intermediate values to all
counterparties.

Let’s demonstrates that:

• All parties arrive at the same shared secret

• Eve can see all intermediate values but can’t compute the final secret

• The implementation follows the two basic principles for extending to larger groups:

1. Starting with g and applying each participant’s exponent once (ie. uses their
public keys)

2. Each participant applies their private key last to get the final secret

2.1 Computing Intermediate Values and Shared Secret
# Private keys
a = 6 # Alice’s private key
b = 15 # Bob’s private key
c = 13 # Carol’s private key

# Calculate public keys (the initial intermediate values)

# Step 1: Alice distributes g^a (her public key, A) to Bob and Carol
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A = g_a = mod_exp(g, a, p)
# Bob sends g^b (his public key, B) to Carol and Alice
B = g_b = mod_exp(g, b, p)
# Carol sends g^c to Alice and Bob
C = g_c = mod_exp(g, c, p)

# Step 2: Bob computes (g^a)^b = g^ab and sends to Carol
g_ab = mod_exp(g_a, b, p)
# Carol computes (g^b)^c = g^bc and sends to Alice
g_bc = mod_exp(g_b, c, p)
# Alice computes (g^c)^a = g^ca and sends to Bob
g_ca = mod_exp(g_c, a, p)

# Step 3: Carol computes (g^ab)^c = g^abc = final secret
s_carol = mod_exp(g_ab, c, p)
# Alice computes (g^bc)^a = g^bca = g^abc = final secret
s_alice = mod_exp(g_bc, a, p)
# Bob computes (g^ca)^b = g^cab = g^abc = final secret
s_bob = mod_exp(g_ca, b, p)

[
["Party", "Private Key", "Public Key", "Final Secret"],
None,
["Alice", a, A, s_alice],
["Bob", b, B, s_bob],
["Carol", c, C, s_carol]

]

Party Private Key Public Key Final Secret
Alice 6 8 4
Bob 15 19 4
Carol 13 21 4

2.2 What Does Eve Know?
[

["Intermediate Value", "Expression", "Value", "Known to Eve?"],
None,
["g^a = A", "g^a mod p", g_a, "Yes"],
["g^b = B", "g^b mod p", g_b, "Yes"],
["g^c = C", "g^c mod p", g_c, "Yes"],
None,
["g^ab = s_{alice/bob}", "g^ab mod p", g_ab, "Yes"],
["g^bc = s_{bob/carol}", "g^bc mod p", g_bc, "Yes"],
["g^ca = s_{carol/alice}", "g^ca mod p", g_ca, "Yes"],
None,
["g^abc = s_{alice/bob/carol}", "g^abc mod p", s_carol, "No"]

]

2.3 Verify All Parties Have Same Secret
assert s_alice == s_bob == s_carol, "Secrets don’t match!"
[

["Verification", "Result"],
None,
["All secrets match", "Yes"],
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Intermediate Value Expression Value Known to Eve?
ga = A ga mod p 8 Yes
gb = B gb mod p 19 Yes
gc = C gc mod p 21 Yes
gab = salice/bob gab mod p 2 Yes
gbc = sbob/carol gbc mod p 7 Yes
gca = scarol/alice gca mod p 18 Yes
gabc = salice/bob/carol gabc mod p 4 No

["Final shared secret", s_alice]
]

Verification Result
All secrets match Yes
Final shared secret 4

2.4 Generalizing to N Counterparies

This can extend to as many counterparties as we like. Let’s verify this works with 4
parties by adding David (d).

The protocol extends naturally:

• Each party applies their exponent in turn

• The order doesn’t matter (verified by calculating two different orders)

• The shared secret remains secure as long as private keys are kept secret

Key mathematical properties:

• The modular exponentiation is associative: (ga)b mod p = g(ab) mod p

– This allows different computation orders to reach the same final secret

– The final secret will be gabcd mod p regardless of computation order

Security implications:

• Eve would see: ga, gb, gc, gd, gab, gbc, gcd, gabc

– But still cannot compute gabcd without knowing at least one private key.

Adding more parties increases the number of visible intermediate values but maintains
security assuming none of the intermediate values are assumed to be secret in any other
N-party shared secret computation!
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keys = {
’a’: 6, # Alice
’b’: 15, # Bob
’c’: 13, # Carol
’d’: 17 # David (new)

}

# Calculate 4-party shared secret
# Order: Alice -> Bob -> Carol -> David
g_a = mod_exp(g, keys[’a’], p)
g_ab = mod_exp(g_a, keys[’b’], p)
g_abc = mod_exp(g_ab, keys[’c’], p)
secret1 = mod_exp(g_abc, keys[’d’], p)

# Alternative order: David -> Carol -> Bob -> Alice
g_d = mod_exp(g, keys[’d’], p)
g_dc = mod_exp(g_d, keys[’c’], p)
g_dcb = mod_exp(g_dc, keys[’b’], p)
secret2 = mod_exp(g_dcb, keys[’a’], p)

[
["Shared Secret Verification:"],
None,
[ "g^a = A", g_a ],
[ "g^{ab}", g_ab ],
[ "g^{abc}", g_abc ],
[ "Secret via A->B->C->D", secret1],
None,
[ "g^d = D", g_d ],
[ "g^{dc}", g_dc ],
[ "g^{dcb}", g_dcb ],
[ "Secret via D->C->B->A", secret2],
None,
[ "Secrets match:", secret1 == secret2],

]

Shared Secret Verification:
ga = A 8
gab 2
gabc 4
Secret via A->B->C->D 2
gd = D 15
gdc 5
gdcb 19
Secret via D->C->B->A 2
Secrets match: True

Great! But there’s an obvious problem. . . Haven’t we seen gab = 2 and gabc = 4
somewhere before, as the shared secret between Alice, Bob, and between Alice, Bob and
Carol?

2.4.1 Shared Secret Exposure Risks!

You’ll notice that the shared secret salice/bob = gab = 2 between Alice and Bob using their
keypairs A = ga and B = gb is exposed, if these same keypairs are ever used to compute
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a shared secret between Alice, Bob and anyone else!
So how may we prevent this from ever happening?

2.5 Only Use Long-Term Keys for Two-Party Shared Secrets

The long-term (eg. Agent) keypairs are too useful for encrypting party-to-party commu-
nications to avoid using them. This public key is the well-known identity of the agent,
and must be reserved for securing communications to and from Agents.

Any implementation must prevent the use of long-term keypairs for computing multi-
party group secrets.

2.6 Use Single-Purpose Keys for Multi-Party Shared Secrets

When initiating multi-party group shared secret computation, the initiator (say, Alice)
must produce a new "group" keypair private key x and public key gx = X to use as the
basis of identifying the group (by the pubic key), and for securely computing the group
shared secret.

By Alice sharing this group-specific public key gx = X, and by also computing and
sharing the first round of intermediate shared values to each counterparty:

gx = X

gax = Ax

gbx = Bx

gcx = Cx

everyone can then proceed to compute their first round of intermediate shared secret
values, just as for the three-party example. However, since all these intermediate values
now depend on a group-unique private exponent x, no information is leaked that can
affect any other group shared secret, nor any two-party shared secret.

This example demonstrates how Alice initiates the computation of a group shared
secret with Bob and Carol using a group-specific keypair. Here’s a breakdown of the
process:

# Long-term private keys
a = 6 # Alice’s private key
b = 15 # Bob’s private key
c = 13 # Carol’s private key

# Calculate/obtain public keys
A = mod_exp(g, a, p) # Alice’s public key
B = mod_exp(g, b, p) # Bob’s public key
C = mod_exp(g, c, p) # Carol’s public key

# Alice generates a new group-specific private key
x = 19 # Alice’s group-specific private key
X = mod_exp(g, x, p) # Alice’s group-specific public key

# Alice computes and shares initial intermediate values with everyone for group X
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g_ax = mod_exp(A, x, p)
g_bx = mod_exp(B, x, p)
g_cx = mod_exp(C, x, p)

# Each party computes their first round of intermediate shared secret values, and shares them with
# all other group X counterparties, ignoring any intermediate values containing their own exponent,
# and only sending to counterparties whose exponent is not already included in the value. Note that
# Alice may receive a redundanct copy (g_cxb and g_bxc), so one can be ignored.
g_axb = mod_exp(g_ax, b, p) # Bob’s computation, send to Carol
g_cxb = mod_exp(g_cx, b, p) # Bob’s computation, send to Alice
g_axc = mod_exp(g_ax, c, p) # Carol’s computation, send to Bob
g_bxc = mod_exp(g_bx, c, p) # Carol’s computation, send to Alice

# Final shared secret computation
s_alice = mod_exp(g_cxb, a, p)
s_bob = mod_exp(g_axc, b, p)
s_carol = mod_exp(g_axb, c, p)
[

["Party", "Public Key", "Intermediate Values", "Final Secret"],
None,
["Group-specific public key (X)", X, "", ""],
None,
["Alice", A, (g_cxb, g_bxc), s_alice],
["Bob", B, g_axc, s_bob],
["Carol", C, g_axb, s_carol],
None,
["Shared secrets match", "", "", s_alice == s_bob == s_carol]

]

Party Public Key Intermediate Values Final Secret
Group-specific public key (X) 7
Alice 8 (11 11) 9
Bob 19 16 9
Carol 21 3 9
Shared secrets match True

3 Implementation Using Ed25519 and X25519 Keypairs

In crypto-licensing, we have a rudimentary pure-python implementation of Ed25519
and X25519 keypair operations. They’re so small, I’ll include them textually right here.

First, Ed25519 signatures:

#
# Edward’s Reference Python-only Implementation of ed25519 signatures
#
# From https://ed25519.cr.yp.to/software.html
# Copyrights: The Ed25519 software is in the public domain.
#
# Minimal changes for Python2/3 compatibility by pjkundert
#

try: # pragma nocover
unicode
PY3 = False
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def asbytes(b):
"""Convert array of integers to byte string"""
return ’’.join(chr(x) for x in b)

def joinbytes(b):
"""Convert array of bytes to byte string"""
return ’’.join(b)

def bit(h, i):
"""Return i’th bit of bytestring h"""
return (ord(h[i//8]) >> (i%8)) & 1

except NameError: # pragma nocover
PY3 = True
asbytes = bytes
joinbytes = bytes
def bit(h, i):

return (h[i//8] >> (i%8)) & 1

import hashlib

b = 256
q = 2**255 - 19
l = 2**252 + 27742317777372353535851937790883648493

def H(m):
return hashlib.sha512(m).digest()

def expmod(b,e,m):
if e == 0: return 1
t = expmod(b,e//2,m)**2 % m
if e & 1: t = (t*b) % m
return t

def inv(x):
return expmod(x,q-2,q)

d = -121665 * inv(121666)
I = expmod(2,(q-1)//4,q)

def xrecover(y):
xx = (y*y-1) * inv(d*y*y+1)
x = expmod(xx,(q+3)//8,q)
if (x*x - xx) % q != 0: x = (x*I) % q
if x % 2 != 0: x = q-x
return x

By = 4 * inv(5)
Bx = xrecover(By)
B = [Bx % q,By % q]

def edwards(P,Q):
x1 = P[0]
y1 = P[1]
x2 = Q[0]
y2 = Q[1]
x3 = (x1*y2+x2*y1) * inv(1+d*x1*x2*y1*y2)
y3 = (y1*y2+x1*x2) * inv(1-d*x1*x2*y1*y2)
return [x3 % q,y3 % q]

def scalarmult(P,e):
if e == 0: return [0,1]
Q = scalarmult(P,e//2)
Q = edwards(Q,Q)
if e & 1: Q = edwards(Q,P)
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return Q

def encodeint(y):
bits = [(y >> i) & 1 for i in range(b)]
#return ’’.join([chr(sum([bits[i * 8 + j] << j for j in range(8)])) for i in range(b//8)])
return asbytes([ sum([bits[i * 8 + j] << j for j in range(8)]) for i in range(b//8)])

def encodepoint(P):
x = P[0]
y = P[1]
bits = [(y >> i) & 1 for i in range(b - 1)] + [x & 1]
#return ’’.join([chr(sum([bits[i * 8 + j] << j for j in range(8)])) for i in range(b//8)])
return asbytes([ sum([bits[i * 8 + j] << j for j in range(8)]) for i in range(b//8)])

def publickey(sk):
h = H(sk)
a = 2**(b-2) + sum(2**i * bit(h,i) for i in range(3,b-2))
A = scalarmult(B,a)
return encodepoint(A)

def Hint(m):
h = H(m)
return sum(2**i * bit(h,i) for i in range(2*b))

def signature(m,sk,pk):
h = H(sk)
a = 2**(b-2) + sum(2**i * bit(h,i) for i in range(3,b-2))
#r = Hint(’’.join([h[i] for i in range(b//8,b//4)]) + m)
r = Hint(joinbytes( [h[i] for i in range(b//8,b//4)]) + m)
R = scalarmult(B,r)
S = (r + Hint(encodepoint(R) + pk + m) * a) % l
return encodepoint(R) + encodeint(S)

def isoncurve(P):
x = P[0]
y = P[1]
return (-x*x + y*y - 1 - d*x*x*y*y) % q == 0

def decodeint(s):
return sum(2**i * bit(s,i) for i in range(0,b))

def decodepoint(s):
y = sum(2**i * bit(s,i) for i in range(0,b-1))
x = xrecover(y)
if x & 1 != bit(s,b-1): x = q-x
P = [x,y]
if not isoncurve(P): raise Exception("decoding point that is not on curve")
return P

def checkvalid(s,m,pk):
if len(s) != b//4: raise Exception("signature length is wrong")
if len(pk) != b//8: raise Exception("public-key length is wrong")
R = decodepoint(s[0:b//8])
A = decodepoint(pk)
S = decodeint(s[b//8:b//4])
h = Hint(encodepoint(R) + pk + m)
if scalarmult(B,S) != edwards(R,scalarmult(A,h)):

raise Exception("signature does not pass verification")

# Provide the ed25519ll API for compatibility

import warnings
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import os

from collections import namedtuple

PUBLICKEYBYTES=32
SECRETKEYBYTES=64
SIGNATUREBYTES=64

Keypair = namedtuple(’Keypair’, (’vk’, ’sk’)) # verifying key, secret key

def crypto_sign_keypair(seed=None):
"""Return (verifying, secret) key from a given seed, or os.urandom(32)"""
if seed is None:

seed = os.urandom(PUBLICKEYBYTES)
else:

warnings.warn("ed25519ll should choose random seed.",
RuntimeWarning)

if len(seed) != 32:
raise ValueError("seed must be 32 random bytes or None.")

# XXX should seed be constrained to be less than 2**255-19?
skbytes = seed
vkbytes = publickey(skbytes)
return Keypair(vkbytes, skbytes+vkbytes)

def crypto_sign(msg, sk):
"""Return signature+message given message and secret key.
The signature is the first SIGNATUREBYTES bytes of the return value.
A copy of msg is in the remainder."""
if len(sk) != SECRETKEYBYTES:

raise ValueError("Bad signing key length %d" % len(sk))
vkbytes = sk[PUBLICKEYBYTES:]
skbytes = sk[:PUBLICKEYBYTES]
sig = signature(msg, skbytes, vkbytes)
return sig + msg

def crypto_sign_open(signed, vk):
"""Return message given signature+message and the verifying key."""
if len(vk) != PUBLICKEYBYTES:

raise ValueError("Bad verifying key length %d" % len(vk))
checkvalid(signed[:SIGNATUREBYTES], signed[SIGNATUREBYTES:], vk) # raises Exception on failure
return signed[SIGNATUREBYTES:]

Next, Curve25519 Diffie-Hellman:

import hashlib
import random

##########################################################
#
# Curve25519 reference implementation by Matthew Dempsky, from:
# http://cr.yp.to/highspeed/naclcrypto-20090310.pdf

P = 2 ** 255 - 19
A = 486662
G = 9

def expmod(b, e, m):
if e == 0: return 1
t = expmod(b, e // 2, m) ** 2 % m
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if e & 1: t = (t * b) % m
return t

def inv(x):
return expmod(x, P - 2, P)

def add(n, m, d):
(xn, zn) = n
(xm, zm) = m
(xd, zd) = d
x = 4 * (xm * xn - zm * zn) ** 2 * zd
z = 4 * (xm * zn - zm * xn) ** 2 * xd
return (x % P, z % P)

def double(n):
(xn, zn) = n
x = (xn ** 2 - zn ** 2) ** 2
z = 4 * xn * zn * (xn ** 2 + A * xn * zn + zn ** 2)
return (x % P, z % P)

def curve25519( n: int, base: int = G ) -> tuple[int, int]:
one = (base,1)
two = double(one)
# f(m) evaluates to a tuple
# containing the mth multiple and the
# (m+1)th multiple of base.
def f(m):

if m == 1: return (one, two)
(pm, pm1) = f(m // 2)
if (m & 1):

return (add(pm, pm1, one), double(pm1))
return (double(pm), add(pm, pm1, one))

((x,z), _) = f(n)
return (x * inv(z)) % P

def H( m: bytes ) -> bytes:
return hashlib.sha512(m).digest()

def curve25519_key( n: int = 0 ) -> int:
"""An curve25519 key as an integer"""
n = n or random.randint(0,P)
n &= ~7
n &= ~(128 << 8 * 31)
n |= 64 << 8 * 31
return n

def bytes_to_int(b: bytes) -> int:
"""Convert bytes to integer"""
return sum( byte << (8 * i) for i,byte in enumerate( b ))

def int_to_bytes(n, length=32):
"""Convert integer to fixed-length bytes"""
return bytes( (n >> (8 * i)) & 0xff for i in range( length ))

def ed25519_to_curve25519_key( sk: bytes ) -> int:
"""Converts a Ed25519 signing key as bytes to a curve25519 key as an integer"""
return curve25519_key( bytes_to_int( H( sk )))

class ECDH:
"""Elliptic Curve Diffie-Hellman.

Computes intermediate secrets for sharing, and the final shared_secret when an intermediate has
been receive that includes all other desired parties’ Ed25519 keys, using X25519 keys derived
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from the supplied Ed25519 key.

"""
def __init__(self, ed25519_keypair, desired: set[ bytes ] ):

"""Initialize with provided Ed25519 private key bytes. Add our public key to the desired
set, which is assumed to contain all other parties’ Ed25519 public keys participating in the
X25519 shared secret calculation.

"""
# Store original Ed25519 private key
self.ed25519_public = ed25519_keypair.vk
self.ed25519_private = ed25519_keypair.sk

# Convert to X25519 private key and compute X25519 public key
self.x25519_private = ed25519_to_curve25519_key( self.ed25519_private )
self.x25519_public = curve25519( self.x25519_private )

desired |= {self.ed25519_public}
self.desired = desired
self.shared_secret = None

def initial_intermediate_value(self):
"""Initial intermediate value is private key . G, which is equivalent to the X25519 public key."""
return self.x25519_public, {self.ed25519_public}

def compute_intermediate_value(self, received_value: int, included: set[ int ]):
"""Compute intermediate value using X25519; add ours unless already included."""
if self.x25519_public not in included:

return curve25519(self.x25519_private, received_value), included | {self.ed25519_public}
return received_value, included

def compute_final_secret(self, received_value: int, included: set[ int ] ):
"""Compute final shared secret, from value with all other desired keys already included."""
assert included | {self.ed25519_public} == self.desired, \

f"Intermediate value is missing keys: {’, ’.join( vk.hex for vk in self.desired - included)}" \
f"; should only have been missing: {self.ed25519_public}"

self.shared_secret = curve25519(self.x25519_private, received_value)
return self.shared_secret, self.desired

Let’s demonstrate how these multi-party Diffie-Hellman operations translate.

3.1 Computing N-Party Diffie-Hellman Shared Secret

Let’s compute a shared secret amongst 3 agents identified by Ed25519 keypairs. First,
get some Ed25519 keypairs and identify all the agents involved:

# Step 1: Create participants with Ed25519 keys; all Ed25519 public keys are added to desired
desired = set()
alice = ECDH( crypto_sign_keypair(), desired )
bobby = ECDH( crypto_sign_keypair(), desired )
carol = ECDH( crypto_sign_keypair(), desired )

def shorten(s, n=16):
s = str(s)
if len(s) <= n:

return s
half = (n - 3) // 2
return s[:half] + ’...’ + s[-half:]

# Step 2: Convert Ed25519 keys to X25519
[
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[ "Agent", "Ed25519 Pubkey"],
None,
[ "Alice", shorten( alice.ed25519_public.hex() )],
[ "Bob", shorten( bobby.ed25519_public.hex() )],
[ "Carol", shorten( carol.ed25519_public.hex() )],
None,
[ "Agent", "X25519 Pubkey"],
None,
[ "Alice", shorten( alice.x25519_public ) ],
[ "Bob", shorten( bobby.x25519_public ) ],
[ "Carol", shorten( carol.x25519_public ) ],

]

Agent Ed25519 Pubkey
Alice 36daff. . . 725d96
Bob 11e34f. . . 90a2da
Carol 1e7c59. . . c27ede
Agent X25519 Pubkey
Alice 421310. . . 219318
Bob 759203. . . 207232
Carol 578783. . . 601620

Now that we have everyone’s Ed25519 private keys, we can compute the intermediate
values between each 2 parties, and see that adding the missing parties’ keys (in any order)
leads to the same shared secret values for each party:

# Step 3: Alice -> Bob
ag, ag_includes = alice.initial_intermediate_value()
assert ag_includes == {alice.ed25519_public}

# Step 4: Bob -> Carol
agb, agb_includes = bobby.compute_intermediate_value( ag, ag_includes )
assert agb_includes == ag_includes | {bobby.ed25519_public}

# Step 5: Carol computes her secret
agbc, agbc_includes = carol.compute_final_secret( agb, agb_includes )
carol_secret = agbc
assert agbc_includes == agb_includes | {carol.ed25519_public}

# Step 6: Bob -> Carol
bg, bg_includes = bobby.initial_intermediate_value()

# Step 7: Carol -> Alice
bgc, bgc_includes = carol.compute_intermediate_value( bg, bg_includes )

# Step 8: Alice computes her secret
bgca, bgca_includes = alice.compute_final_secret( bgc, bgc_includes )
alice_secret = bgca

# Step 9: Carol -> Alice
cg, cg_includes = carol.initial_intermediate_value()

# Step 10: Alice -> Bob
cga, cga_includes = alice.compute_intermediate_value( cg, cg_includes )

# Step 11: Bob computes his secret
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cgab, cgab_includes = bobby.compute_final_secret( cga, cga_includes )
bob_secret = cgab

[
[ "Intermediates", "Value" ],
None,
["Alice -> Bob", shorten( ag )],
["Alice -> Bob -> Carol", shorten( agb )],
["Bob -> Carol", shorten( bg )],
["Bob -> Carol -> Alice", shorten( bgc )],
["Carol -> Alice", shorten( cg )],
["Carol -> Alice -> Bob", shorten( cga )],
None,
[ "Agent", "Final Shared Secret" ],
None,
[ "Alice", shorten( alice_secret ) ],
[ "Bob", shorten( bob_secret ) ],
[ "Carol", shorten( carol_secret) ],
None,
["Shared secrets match", alice_secret == bob_secret == carol_secret],

]

Intermediates Value
Alice -> Bob 421310. . . 219318
Alice -> Bob -> Carol 351695. . . 659595
Bob -> Carol 759203. . . 207232
Bob -> Carol -> Alice 395917. . . 858106
Carol -> Alice 578783. . . 601620
Carol -> Alice -> Bob 265109. . . 959516
Agent Final Shared Secret
Alice 422018. . . 424298
Bob 422018. . . 424298
Carol 422018. . . 424298
Shared secrets match True

3.1.1 Shared Secret Exposure Risks!

Just as with the simple D-H example, computing each 2-party Intermediate value for an
N-party shared secret exposes the D-H shared secret used by those 2 parties!

So, we must ensure that our implementation never allows this.
We can accomplish this certainty by demanding that:

• exactly one participant must initiate the N-party D-H secret, and

• it must identify all the other (N-1) parties by public key, and

• it must include an Ephemeral (random) private key in the group!

By ensuring that every N-party D-H secret includes a random Ephemeral key (so N+1
Ed25519 keypairs), and the initiator always provides a starting Intermediate including
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both the Ephemeral key and its own key – every D-H shared secret including the same
N parties will always be unique.

I suggest that we use the Public Key of Ephemeral keypair as the "identity" of the
group D-H secret.

For example; if we use this functionality to establish a 5-party encrypted message
group, the initiating party’s Ephemeral public key would be the unique identifier for the
group.

4 Implementing in lair-keystore

The current implementation of lair-keystore is missing a few features required to ef-
fectively utilize ECDH (Elliptic Curve Diffie-Hellman) for Two-Party shared secrets, and
support for N-party shared secrets is missing entirely.

These capabilities could be implemented outside lair-keystore (eg. by using ed25519-dalek
in the Zome’s Rust code), but all keys would need to be generated and managed by the
Zome code, losing access to the Agent ID private keys (which are never exposed by
lair-keystore), and much of the valuable security due to the careful cryptographic se-
cret handling provided by lair-keystore – it would be easy to bungle the handling of
private keys in Zome code, and expose them unintentionally.

Therefore, I propose the following enhancements to lair-keystore:

4.1 Computing Common Shared Data Using a Shared Secret

Many situations involving Agent-to-Agent communications require some shared secret to
be computed. This shared secret is computed internally by lair-keystore for the local
Agents private key and any other Agent’s public key.

Presently, arbitrary data can be encrypted using LairApiReqCryptoBoxXSalsaBySignPubKey
etc., by one agent, and can be decrypted by the recipient Agent, which is valuable.

However, there is presently no way for two agents to use this shared secret to compute
any other shared data – for example, for two agents to agree on a common Holochain DNA
metadata value, so they can independently establish Holochain DNA instances that share
the same DHT! Presently, the two Agents must come up with some external mechanism
to communicate a common DNA metadata value with each-other, and then establish their
DNA instances with the shared DHT.

4.1.1 Enhance ...CryptoBox... APIs to Allow Optional nonce

There are 3 ways that ChaCha20Poly1305 may be safely used by two parties that have
arrived at a common shared secret encryption key, with certain constraints:

• Hash some fixed known data with the shared secret, or use it directly as the cipher
key

• Use 0 or some other shared data (eg. the xor or sort+hash of the two public keys)
as nonce
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• Encrypt known plaintext data (eg. zeros) of the desired output length to yield a
deterministic shared value between the two Agents

Any of these approaches are valid (do not cryptographically reveal the shared secret)
– if the nonce will never again be used with the same cipher key and different plaintext
data!

It is recommended that some fixed data be hashed with the cipher key in this construc-
tion, so that if the nonce is accidentally reused with the same shared secret cipher key and
different data, it only cryptographically compromises this one application’s hashed shared
secret – not the valuable single underlying Agent-to-Agent shared secret. Therefore, in
the APIs allowing a user-supplied nonce, a mandatory SHA-256 hash of the shared secret
cipher key with some user-supplied data (possibly empty) may be advisable. The goal is
to provide a means to arrive at some common output ciphertext between two independent
parties, depending only on their public keys, and this approach achieves that goal without
risking the cryptographic integrity of the shared secret.

This enhancement is simple, and has limited risk – especially if some additional data is
required to hash with the computed Diffie-Hellman shared secret when used as the cipher
key.

4.2 Revealing Intermediate Values for Multi-Party Shared Secrets

For keypairs stored by lair-keystore to be used in computing multi-party shared secrets,
at the very least we must implement the ability to provide a value to apply modular
exponentiation by a keypair’s secret key exponent, and return the result.

This is essentially the procedure for producing a public key from a private key: if the
primitive root g is provided, and this function is called for a private key x, the public key
X is returned.

If it is called with value of the public key ga = A, using private key x, it would return
the shared secret (ga)x = gax derivable by holders of the private keys a and x.

Thus, misuse could easily leak the valuable shared secret used by communications
between long-term keypairs of Agents, which lair-keystore strives to protect!

Furthermore, the creation of intermediate values during the calculation of shared
secrets represent a set of private key exponents (identified by their public keys) in the
value. Up until all counterparties are represented, multiplying by the private key exponent
yields yet another intermediate value to be sent to some counterparty not yet represented
in the value. This set of represented keys must be returned along with the intermediate
value, and sent along so that the counterparties know the keys included in the value.

However, when all counterparties are included in the value, the final modular expo-
nentiation with this Agent’s private key exponent yields the final shared secret! This
secret should be stored by lair-keystore encrypted at rest, and not returned – it must
only be used for subsequent ...CryptoBox... encryption operations, the same as for
two-party shared secrets:

• The encryption of data, with a secure random nonce, or

• The production of deterministic shared data, with a user-supplied nonce and data.
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4.2.1 Add ...GroupIntermediate... APIs To Construct Intermediate Values

Receives a value and a set of Public Keys represented and desired, and the identity of
a locally held private keypair (ByTag, BySignPubKey, etc.), and:

1. If adding private key exponent(s) found locally in set desired - represented
doesn’t satisfy all desired keys, return the value with the public key(s) added
to represented; return an error if none found.

The caller then forwards the value and represented set along to the appropriate
counterparties as an intermediate value.

2. If all key(s) required to fulfill the desired are found, then apply them and store the
shared secret and return a success indicator.

The caller may then use encryption and decryption operations as for any other
computed shared secret, eg. LairApiReqCryptoBoxXSalsaBySignPubKey. However,
the APIs would have to be enhanced to allow the identification of the shared secret
by desired group, instead of by sender_pub_key and recipient_pub_key.

4.3 Implementing in Holochain

Additional APIs must be added to Holochain’s hdk and hdi to allow construction and
validation of intermediate values. Once implemented in lair-keystore, these should be
quite simple.

4.4 Additional Suggestions

Remove the dependency on libsodium from lair-keystore, and instead use Rust-native
encryption intrinsics.
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